Mathématiques

Question

Bonjour j'ai vraiment besoin d'aide pour ce Dm, je ne comprend absolument rien...
En construisant le symétrique du point J par rapport à la droite d (matérialisant le bord de la rivière) et en utilisant le théorème de Thalès, déterminer la position exacte du point R (c'est à dire la distance PR) pour laquelle la distance maison-rivière-jardin est minimale.
N'hésiter par à ajouter des points si nécessaires.

Merci d'avance pour votre aide !
Bonjour j'ai vraiment besoin d'aide pour ce Dm, je ne comprend absolument rien... En construisant le symétrique du point J par rapport à la droite d (matérialis

1 Réponse

  • Sur ton schéma Les points R' et J' sont bien placés donc

    J' est le symétrique de J par rapport à H donc JH=J'H = 2
    Les droites (MP) et (JJ') sont // donc d'après le théorème de Thalès :
    R'J'/R'M = J'H/MP = R'H/PR'
    or J'H = 2, MP = 4 , PR' = x et R'H = 6-x
    donc
    J'H/MP = R'H/PR'
    2/4 = (6-x)/x
    2x = 4(6-x)
    x = (6-x)4/2
    x = (6-x)2
    x = 12 - 2x
    x+2x = 12
    3x = 12
    x = 12/4
    x = 4

    La distance maison-jardin-rivière sera minimale pour R placer à 4 m de P (je suppose que se sont des mètres, sinon tu mets l'unité qui convient)